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Abstract

Background: Concomitant administration of allogeneic umbilical cord blood (UCB) infusion and erythropoietin
(EPO) showed therapeutic efficacy in children with cerebral palsy (CP). However, no clinical studies have
investigated the effects of UCB and EPO combination therapy using a 2 x 2 four-arm factorial blinded design
with four arms. This randomized placebo-controlled trial aimed to identify the synergistic and individual
efficacies of UCB cell and EPO for the treatment of CP.

Methods: Children diagnosed with CP were randomly segregated into four groups: (A) UCB+EPO, (B) UCB+placebo
EPO, (Q) placebo UCB+EPO, and (D) placebo UCB+placebo EPO. Based on the UCB unit selection criteria of matching
for 2 4/6 of human leukocyte antigen (HLA)-A, -B, and DRB1 and total nucleated cell (TNC) number of 2 3 x 107/kg,
allogeneic UCB was intravenously infused and 500 IU/kg human recombinant EPO was administered six times.
Functional measurements, brain imaging studies, and electroencephalography were performed from baseline until 12
months post-treatment. Furthermore, adverse events were closely monitored.
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remained unchanged upon UCB or EPO administration.

recovery in children with CP without harmful effects.

Results: Eighty-eight of 92 children enrolled (3.05 + 1.22 years) completed the study. Change in gross motor performance
measure (GMPM) was greater in group A than in group D at 1 month (4230 vs. 20.71, P=0025) and 12 months (246.85 vs.
4234, P=0018) post-treatment. GMPM change ratios were calculated to adjust motor function at the baseline. Group A
showed a larger improvement in the GMPM change ratio at 1T month and 12 months post-treatment than group D. At 12
months post-treatment, the GMPM change ratios were in the order of groups A, B, C, and D. These results indicate
synergistic effect of UCB and EPO combination better than each single therapy. In diffusion tensor imaging, the change ratio
of fractional anisotropy at spinothalamic radiation was higher in group A than group D in subgroup of age = 3 years.
Additionally, higher TNC and more HLA-matched UCB units led to better gross motor outcomes in group A. Adverse events

Conclusions: These results indicate that the efficacy of allogeneic UCB cell could be potentiated by EPO for neurological

Trial registration: ClinicalTrials.gov, NCT01991145, registered 25 November 2013.
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Background

Cerebral palsy (CP), the leading cause of motor impair-
ment in early childhood, causes life-long disabilities [1, 2].
Clinical improvements following conventional rehabilita-
tion or surgical therapies are limited [1]. Children with CP
also present motor improvement to an extent until certain
age [3]. Thereafter, it is difficult to acquire higher gross
motor function and further functional decline may be ob-
served in severely disabled children [4]. Lasting neuroin-
flammation and apoptosis occur in brains of CP patients,
which cannot be corrected with conventional therapeutic
approaches [5]. These disruptions influence the endogen-
ous repair and regeneration after primary insult to the im-
mature brain, known as a tertiary pathomechanism [6].
Cell and growth factor therapies are suggested to have
therapeutic effects against this pathogenesis [6, 7].

Cell therapy in CP has been investigated for more than
10years [1, 8]. The cell types used in clinical trials were
umbilical cord blood (UCB) cells, olfactory ensheathing
cells, neural stem cells, and neural progenitor cells [9].
Among these various cell types, the UCB containing stem
cells are reportedly safe even for newborns [9-11]. Since
its first use in 1988, UCB has been administered in over
100 indications including neurological disorders without
reports of harmful effects [12-14]. UCB has been sug-
gested to exert neuroprotective, anti-inflammatory, and
anti-apoptotic effects [15]. Although autologous UCB may
be ideal with positive results in previous clinical trials,
most children with CP do not possess their own UCBs
[16, 17]. UCB has substantial advantages over other cell
sources because UCB has been banked worldwide and
allogeneic UCB can be an alternative option with advan-
tage of immune-tolerant characteristics [18].

So far, cell therapy has shown its efficacy mostly in
preclinical stem cell researches. The main reasons that
clinical applications of cell therapies for CP remain in
the experimental stage are safety concerns and

insufficient efficacy issues. Growth factors such as
erythropoietin (EPO) and the granulocyte colony-
stimulating factors have been introduced to potentiate
the efficacy of cell therapy [19, 20]. EPO was reported to
exert neuroprotective and neural repair effects, particu-
larly in a neonatal hypoxic/ischemic brain injury CP
model [21]. In a rat model of stroke, combination ther-
apy with UCB cell and EPO exerted synergistic effects
on neurological recovery, characterized by neurogenesis
and angiogenesis, compared to UCB or EPO monother-
apy [22]. Since both UCB and EPO could stimulate the
same Akt signaling pathway, the effect of UCB might be
reinforced by EPO [23, 24]. Furthermore, the clinical use
of EPO showed neuroprotective effects among preterm
infants [25, 26].

In our previous clinical trial, children with CP-
administered intravenous allogeneic UCB infusion with
EPO showed better outcomes than those administered
EPO alone and control groups [27]. A subsequent trial
assessing the therapeutic efficacy of UCB monotherapy
suggested a therapeutic potential of UCB with its im-
munomodulatory characteristics including systemic
pentraxin 3 (PTX3) upregulation [28]. However, the
synergistic effect of UCB and EPO has not been
assessed by direct group comparisons. This 2x2
factorial-designed double-blind placebo-controlled ran-
domized trial was performed to identify the individual
and/or synergistic efficacies of UCB and EPO combin-
ation therapy in children with CP for 1 year, with a lon-
ger period than that of our previous trials. In addition
to the assessment of the functional changes, we
assessed changes in the brain tissue through brain im-
aging and electroencephalography (EEG). Molecules
potentially associated with neurological recovery were
assayed and specific conditions of UCB and its recipi-
ents, serving as potential indicators of treatment effect-
iveness were also analyzed herein.


https://clinicaltrials.gov/ct2/show/NCT01991145
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Methods

Participants

The inclusion criteria were children diagnosed with CP
between 10 months and 6 years of age who had (i) allo-
geneic UCB units with criteria of >3 x 10’/kg total nu-
cleated cell (TNC) number and matched for >4/6 of the
human leukocyte antigen (HLA)-A, B, and DRB1 at high
resolution and (ii) a hemoglobin level <13.6 g/dL. Par-
ents or representatives provided written informed con-
sent to participate in the study. The exclusion criteria
were aspiration pneumonia, genetic diseases, hypersensi-
tivity to the study medications, coagulopathy, intractable
epilepsy, hypertension, hepatic or renal impairments,
malignancies, and absolute neutrophil count <500/dL.
The protocol was approved by the institutional review
board (No. 2013-04-41) and the Korean Ministry of
Food and Drug Safety (No. 12515) (Clinicaltrials.gov
NCT01991145) [29].

Study design and masking

The procedure was conducted as a double-blind
placebo-controlled randomized trial. Participants were
assigned into four groups using a block randomization
code generated with SAS version 9.2 (SAS Institute Inc.,
Cary, NC, USA): (A) UCB+EPO, (B) UCB+placebo EPO
(P-EPO), (C) placebo UCB (P-UCB)+EPO, and (D) P-
UCB+P-EPO. Randomization was stratified by 2 factors:
age (<3 vs =3years) and severity in the gross motor
function classification system (GMEFCS) level (GMFCS
I-III, vs GMFCS IV-V) to ensure an even distribution
into the allocation arms. The sample size was planned to
recruit 30 patients per each group, total number of 120,
based on central limit theorem [29]. To maintain
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blindness of the study of all participants, researchers,
and outcome assessors to the treatment, an elaborate co-
operation protocol was used (Fig. 1) [29]. Placebo mate-
rials of UCB, EPO, and cyclosporine were used. P-UCB
was made from the subject’s own peripheral blood by
UCB managers on the day of UCB therapy with the
same appearance of UCB. Laboratory results such as the
levels of hemoglobin affected by EPO and cyclosporine
in the placebo groups which may affect the blindness of
investigators were given artificial values by a designated
investigator in the Department of Laboratory Medicine.
The sham results were replaced by true values after
completion of the study.

All data were recorded on government-sponsored on-
line case reporting system using the internet-based Clin-
ical Research and Trial management system, Korea
(C140005), and managed independently.

Procedures

Allogeneic UCB units were selected from the affiliated
CHA cord blood bank after approval of Korean Organ
Sharing Center. ABO blood types were matched, and
two units of UCB were allowed to maintain the cell dose.
Before administration, each unit was washed to eliminate
dimethyl sulfoxide [30]. A single intravenous infusion of
UCB or its placebo was performed. Groups A and B
were administered with oral cyclosporine (ChongKun-
Dang Pharm, Corp., Korea) at a dose of 7 mg/kg bid per
day starting from 3 days before UCB administration; the
same prescription was continued for 16 days (D-3 to
D+ 12 days). Groups C and D were administered place-
bos of UCB prepared from autologous peripheral blood
and cyclosporine vehicle.
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Dispense UCB units
v7 1month + 3 days T Functional assessmentsand blood test il

UCB forwarders
Thawi/viash UCB
or make placebo

V8  3months £ 2 weeks —— Functional assessments
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Fig. 1 Screening, randomization, and follow-up. a The timeline of the study, b the cooperation of investigators to maintain double-blindness, and
c the study flow. CP, cerebral palsy; DTI, diffusion tensor image; EEG, electroencephalogram; EPO, erythropoietin; FA, fractional anisotropy; GMFCS,
gross motor function classification system; HLA, human leukocyte antigen; MRI, magnetic resonance imaging; PET, positron emission tomography;
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All participants in group A and C were administered
EPO (Espogen’, LG Chem, Ltd., Korea) intravenously at
a dose of 500 IU/kg at 2 h before UCB or placebo infu-
sion. Subsequently, from D+ 3, each subject was injected
five additional times with EPO at the same dose sub-
cutaneously at 3-day intervals. Groups B and D were ad-
ministered the EPO vehicle as a placebo. The vehicle
placebo cyclosporine and EPO were provided by their
own pharmaceutical companies.

All participants continued their conventional rehabili-
tation and were monitored for adverse events (AEs)
(Fig. 1).

Outcomes

Functional outcomes

Primary outcomes were the total scores of the gross
motor performance measure (GMPM) [31], gross motor
functional measure (GMFM) [32], and raw scores of
mental and motor scales of the Bayley Scales for Infant
Development-II (BSID-II) [33] which were assessed at
baseline and 1, 3, 6, and 12 months after treatment
(Additional file 1). The reliabilities of the primary out-
comes among assessors were established by the clinical
study team [34-36].

Subgroup analyses were conducted to estimate favor-
able indications for treatment according to the following
clinical conditions: gestational age (GA) on birth divided
as term (GA > 37 weeks) vs preterm (GA < 37 weeks); se-
verity in the motor function impairment divided as mild
(GMECS levels I-III) vs severe (GMFCS levels IV-V)
impairment; and age at the time of the procedure di-
vided as younger (< 3 years) vs older (> 3 years) ages.

Secondary outcome measures were other functional
measures including GMFCS [37], Pediatric Evaluation of
Disability Inventory [38], Functional Independence
Measure for Children [39], summed scores on muscular
strength by Medical Research Council scale [40], Beery-
Buktenica developmental test of visual-motor integration
[41], selective control assessment of lower extremity
[42], modified Ashworth scale [43], modified Tardieu
scale [44], and Quality of Upper Extremity Skills Test
[45] (Additional file 2). All functional outcomes were
assessed as planned in the trial protocol by trained asses-
sors who were not aware of group assignment.

Survey of parent perception of the intervention

The subjective satisfaction towards the intervention was
surveyed among the caregivers of the patients at comple-
tion of the study before the group allocation was open
(Additional file 2).

Imaging studies and electroencephalogram (EEG)
Brain magnetic resonance imaging (MRI) and **F-fluoro-
deoxyglucose positron emission tomography/computed
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tomography (‘*F-PET/CT) images were acquired at base-
line and at 12 months after intervention. Diffusion tensor
imaging (DTI) data from brain MRI were obtained to de-
termine the effects of treatment on the white matter inte-
gration. Fractional anisotropy (FA) values were calculated
by a voxel-based approach using the Tract-Based Spatial
Statistics tool in an automated process [46, 47]. There are
a total of 17 different white-mater tracts—single corpus
callosum and bilateral fibers of eight tracts such as the an-
terior thalamic radiation (ATR), the cingulum in the
cingulate cortex area, the cingulum in the hippocampal
area, the corticospinal tract, the inferior fronto-occipital
fasciculus, the superior and the inferior longitudinal fas-
ciculus, and the uncinate fasciculus (Additional file 3)—
from JHU white matter tractography atlases [48]. '°F-
PET/CT images were acquired to assess differences in the
regional brain glucose metabolism between groups and
between the pre-treatment and the post-treatment im-
aging data (Additional file 4). Furthermore, sleeping asleep
EEG was performed at baseline and 12 months after treat-
ment. The average delta/alpha band power ratio (DAR)
was obtained from five brain regions including the frontal,
central, temporal, parietal, and occipital cortices, and their
differences from pre-treatment to 12months post-
treatment were determined (Additional file 5).

Cytokines

Cytokines were analyzed using blood samples collected
at 4 days before UCB infusion (D- 4), at the day of UCB
injection prior to infusion (D-0), and at 3 days, 10 days,
and 30 days after UCB infusion (D+ 3, D+ 10, and D+
30). Plasma levels of PTX-3, IL-8, TNF-a, and IL-1B
were measured by an enzyme-linked immunosorbent
assay and mRNA expression of the corresponding cyto-
kines was measured by the reverse transcription poly-
merase chain reaction (Additional file 6) [28].

Statistical analyses

Statistical analyses were performed using SPSS version
21.0 software (SPSS, Inc., Chicago, IL, USA) and Prism
5.0 software (GraphPad, Inc., San Diego, CA, USA). Cat-
egorical variables were analyzed by the Fisher’s exact
test. Functional outcomes and the FA values from DTIs
were compared by Kruskal-Wallis test with post hoc
analyses and Mann-Whitney U test appropriately. As for
primary outcomes (GMPM and GMFM), changes in raw
scores from baseline were compared among four groups
at each time point (1, 3, 6, and 12 months). Then, the
changed values between baseline and each time point
were divided by baseline values, expressed as GMPM or
GMEM change ratio in order to adjust the baseline func-
tion. Ratio values were also compared as changes of raw
scores.
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Analysis of variance (ANOVA) and the paired ¢ test
were used to evaluate regional brain glucose metabolism.
EEG data were analyzed with the iSyncBrain® software
version 2.0 (iMediSync, Inc., Seoul, Korea). Average
DARs were calculated from five brain regions and the
Mann-Whitney U test was used. Data were locked on
March 27, 2018, and all statistical analyses were con-
firmed by a statistician. Missing data were filled in by
the last observational carried forward imputation.

Results

From December 2013 to May 2016, 124 children with CP
were enrolled, and 32 were excluded. Ninety-two subjects
were randomly assigned to each group and four subjects
withdrew their participation after the randomization.
Eighty-eight participants (3.05 + 1.22 years) were finally in-
cluded: group A (UCB+EPO, n=22), group B (UCB+P-
EPO, n = 24), group C (P-UCB+EPO, n = 20), and group D
(P-UCB+P-EPO, n=22) (Fig. 1, Additional file 7). The
demographic data revealed no significant differences in
baseline variables among the groups (Table 1).

Adverse events

In groups A and C who were administered true EPO,
the levels of hemoglobin, hematocrit, and red blood cells
increased to the upper reference limits at 1 month post-
therapy and then returned to the baseline levels (Add-
itional file 8). All other laboratory data were within the
reference ranges during the study period.

Eleven serious AEs were reported in the safety set.
The distributions of serious AEs and non-serious AEs
did not differ among the four groups, and all subjects re-
covered (Additional file 9).

Functional outcomes

There were no significant differences in baseline measure-
ments among the four groups. All groups showed im-
provements in primary outcomes except for GMPM in
group D during 1year. Group A showed a greater im-
provement in the GMPM score at 1 month (22.30) and
12 months (26.85) post-treatment compared to group D
(20.71 and 22.34) (P=0.025 and P =0.018, respectively)
(Fig. 2A (a), Additional file 10). Randomization was strati-
fied according to motor severity and age at the baseline,
likely explaining the reason of the functional status that
did not differ among the four groups. Despite performing
a stratified randomization to ensure an even distribution,
more participants in group C tended to have better motor

function. Thus, we also calculated GMPM change ratios

as ((score at the time point - score at baseline )
score at baseline

isons to adjust motor function at the baseline. Group A
showed a larger improvement in the GMPM change ratio
at 1 month (0.11) and 12 months (0.33) post-treatment

) for outcome compar-
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than group D (0.02 and 0.07) (P =0.023 and P =0.016, re-
spectively) (Fig. 2A (c), Additional file 11). At 12 months
post-treatment, the GMPM change ratios were in the
order of groups A, B, C, and D, with changes in the
GMFM ratio showing the same order (Fig. 2A (b, ¢)).
These results indicate synergistic effect from UCB and
EPO combination according to the changed score value in
comparison with those values in individual therapies. The
improved GMPM score (A 6.85) of group A is higher than
those of group B (A 5.58) or C (A 3.67) at 12 months post-
treatment.

Efficacy factor analysis for UCB conditions revealed
two significant findings (Additional file 12). When par-
ticipants in groups A and B were divided into 2 sub-
groups by the median TNC value per body weight of
each groups, the higher TNC subgroup in group A than
in group D resulted in greater improvement in the
GMPM change ratio at 12months post-treatment
(Fig. 2B (a)). Additionally, subjects administered higher
matched units (HLA full-matched or 1 mis-matched;
n=10) showed greater increases in the GMFM score
than those administered with the HLA 2 mis-matched
units (n = 12) in group A at 1 month and 3 months post-
treatment (P =0.036 and P =0.05, respectively) (Fig. 2B
(b)). The changes of BSID-II raw scores in four groups
were not different during the study period. Other sec-
ondary outcomes also did not differ among four groups.

Survey of parent perception of the intervention

The survey among the caregivers showed significantly
higher satisfaction for language improvement in group A
(P=0.05) and for mental improvement in group B (P=
0.015) compared to those in group D (Additional file 13).

Subgroup analyses

Mild vs severe impairment

In the severe impairment subgroup (n=55), group A
showed a greater improvement in the GMPM change ra-
tio compared to groups C and D, whereas comparison in
the mild impairment group (n =33) did not show a dif-
ferent outcome (panel A in Additional file 14).

Term vs preterm

In the term birth subgroup (n=23), groups A and B
showed a greater improvement in the GMPM change ra-
tio compared to that in the groups C and D. There were
no significant differences among 4 groups in preterm
birth subgroup (# = 65) (panel B in Additional file 14).

Younger vs older age

There were no significant differences on any outcome
measures in neither younger (n=37) or older (n=>51)
subgroups.
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Table 1 Demographic and baseline participant characteristics (n = 88)
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Group? Group A (n=22)

Group B (n=24)

Group C (n=20)

Group D (n=22)

Demographics

Sex, no. % male 10 (45.5%) 11 (45.8%) 10 (50.0%) 15 (68.2%)
Age, year; mean (SD; range)b 30(1.2; 1.5-6.3) 29 (1.3, 1.0-5.0) 34 (1.3;1.1-5.8) 30(1.1; 1.2-6.0)
Gestational age, weeks; mean (SD; range) 323 (4.8; 26-41) 31.9 (3.9; 26-40) 31.9 (4.3; 26-40) 33.6 (54; 24-42)
Preterm, no. (%) 16 (72.7%) 20 (83.3%) 16 (80.0%) 13 (59.1%)
Birth weight (SD; range), kg 19 (8; 6-3.6) 19 (8; 8-34) 19 (8;.7-3.5) 22(9;.7-4.2)
NBW/LBW/VLBW/ELBW® 6/7/8/1 5/10/7/2 5/8/5/2 10/7/3/2
GMFCS (I/1I/11/V/V) 1/2/5/6/8 2/2/5/3/12 1/6/3/7/3 0/1/5/10/6
Typology (SB/SU/D/C/A)° 18/0/3/0/1 20/0/4/0/0 15/0/4/0/1 17/0/4/0/1
Baseline primary outcome measures
GMFM 38.0 (229) 319 (244) 443 (21.8) 31.1 (16.2)
GMPM 341 (14.7) 327 (13.6) 38.1 (11.5) 359 (11.2)
BSID-Il mental raw score 1064 (38.5) 99.2 (44.1) 121.7 (33.2) 100.9 (39.1)
BSID-Il motor raw score 49.8 (19.9) 483 (24.5) 61.1 (20.1) 475 (21.5)
MRI finding s[49]

Normal (n=0) 0 0 0 0
Acquired lesions (n = 87)

Periventricular leukomalacia (n = 66) 17 20 14 15

Diffuse encephalopathy (n=18) 4 4 5 5

Focal ischemia/hemorrhage (n=1) 0 0 1

Multicystic encephalomalacia (n=2) 1 0 0 1
Malformations (n = 0)

Cortical dysplasia (n =0) 0 0 0 0

Schizencephaly (n =0) 0 0 0 0

Corpus callosum agenesis (n = 0) 0 0 0 0
Miscellaneous/unknown (n=1)

Miscellaneous etiologies (n = 0) 0 0 0 0

Abnormality of white matter signal (n=1) 0 0 1 0

Values represent number of patients unless otherwise noted. No baseline characteristics were significantly different among four groups (P value > 0.05 for all

comparisons). Baseline primary outcome measures are shown as means (SD)

2Group A (n=22) received UCB and EPO, group B (n = 24) received UCB and placebo EPO, group C (n = 20) received placebo UCB and EPO, and group D (n=22)

received placebo UCB and placebo EPO
PAge at the time of intervention, corrected for preterm birth

“NBW was defined as birth body weight > 2500 g, LBW < 2500 g, VLBW < 1500 g, and ELBW < 1000 g

dTypoIogy was divided as follows: SB, SU, D, C, and A

Abbreviations: Birth weight (NBW normal birth weight, LBW low birth weight, VLBW very low birth weight, ELBW extremely low birth weight), BSID-Il Bayley scales
of infant development-Il, EPO erythropoietin, GMFM gross motor function measure, GMPM gross motor performance measure, Typology (SB spastic bilateral, SU
spastic unilateral, D dystonic, C choreoathetoid, A ataxic), UCB umbilical cord blood

Structural changes in DTI
DTI data were obtained from 80 patients. No significant

differences were observed in the FA change ratios calcu-

(FA at the time point — FA at baseline )y . .
lated as ( A at basoling ) in 19 regions of

interest among the 4 groups. However, in subpopula-
tions of >3years, group A displayed the higher incre-
ment in the FA change ratio at the right ATR than
group D (P < 0.05) (Additional file 15).

Metabolic changes in PET/CT

PET/CT data from 71 patients were available for ana-
lysis. Increased glucose metabolism was observed at the
bilateral cerebellar hemisphere in group B, whereas it
was increased at the midbrain and the thalamus in group
D (Additional file 16).

EEG mapping of band power
EEG data from 78 patients were available for analysis.
The relative value of average DAR showed a decreasing
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Fig. 2 Changes in gross motor outcome. A Changes in (a) GMPM, (b) GMFM change ratio, and (c) GMPM change ratio from baseline to
1, 3, 6, and 12 months post-treatment among group A, B, C, and D. GMPM and GMFM change ratios were calculated as

(GMPM at the time point — GMPM at baseline ) (GMFM at the time point — GMFM at baseline ) . _ . "
CMPM ot Baseline and EMEM ot Baseline , respectively. Group A (n=22) received umbilical cord blood

(UCB) with erythropoietin (EPO), group B (n=24) received UCB with placebo EPO (P-EPO), group C (n=20) received placebo UCB (P-UCB)
and EPO, and group D (n=22) received P-UCB and P-EPO. Data are shown in violin plots where dots represent each value, bold dotted
lines represent the median and fine dotted lines represent lower and upper quartiles. Asterisk indicates significant difference in outcome
scores between two groups based on post hoc analyses (P < 0.05) (Dunn’'s multiple comparison test) following Kruskal-Wallis test. B
Changes in GMPM change ratio according to (a) cell dose and (b) HLA disparity in group A. Subgroups with lower and higher TNC were
categorized according to the median value of TNC in groups A and B. Subgroup from group A with higher TNC showed significant
improvement in GMPM change ratio compared to group D after 12 months post-intervention. Data are also shown in violin plots where
dots represent each value, bold dotted lines represent the median and fine dotted lines represent lower and upper quartiles. Asterisk
indicates significant difference in outcome scores between two groups based on post hoc analyses (P < 0.05) (Dunn’s multiple comparison
test) following Kruskal-Wallis test. The impact of HLA incompatibility was analyzed between HLA full-matched or 1 mis-matched and HLA
2 mis-matched cases in group A and B. In group A, variances of GMFM during baseline to 1 month (P=0.036) and to 3 months (P=0.05)
were larger among the subjects who received more HLA-compatible UCB (n=10) than those treated with HLA 2-mismatched UCB (n=
12). Asterisk indicates significant difference in outcome scores between two groups based on Mann-Whitney U test. EPO, erythropoietin;
GMFM, gross motor function measure; GMPM, gross motor performance measure; HLA, human leukocyte antigen; TNC, total nucleated
cell; UCB, umbilical cord blood

trend after treatment in groups A, B, and C, particularly  days (P=0.013) post-treatment from baseline in the im-
at the posterior parietal and the occipital regions com-  proved subgroup (Additional file 17).
pared to that in group D. However, only group C In group B, when the cytokine change ratios calculated as

showed a significant change between the baseline and = ((valueat the ﬁvfalne Poml:-l‘ifilue at bascline ) y \were compared between
ue at baseline

post-treatment DAR (Fig. 3). “more-improved” and “less-improved” changes in the median
GMPM score over 12 months, those of IL-8 and PTX3 were

. . . . higher at 10days post-treatment in the “more-improved”

Changes in mRNA expressions and cytokines associated group than in the “less-improved” group (P=0.039 and P=

with inflammation and innate immunity 0,031 respectively) (Additional file 18)
Blood samples from 32 patients were available for analysis.

They were re-grouped into 2 subgroups: those showing im-

provements in GMFCS (n=12) or without improvements  Discussion

(n=20) at 12 months post-treatment. The mRNA levels of  This study aimed to verify the results of our previous
IL-1/3 showed a greater increase at 3 days (P=0.036) and 10 clinical trial regarding the efficacy and safety of UCB
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Fig. 3 Electroencephalogram mapping before and after UCB injection. Average delta/alpha band power ratio (DAR) from electroencephalogram (EEG) is

depicted on the 2D brain topomap. DAR from EEG taken before treatment, 12 months after treatment, and their difference (post-treatment—pre-treatment) are
shown from left towards right. a Taken from group A (n= 20, mean age of pre-treatment EEG was 2.95 + 1.20 years), b from group B (n = 20, mean age of pre-
treatment EEG was 2.71 + 1.27 years), ¢ from group C (n =20, mean age of pre-treatment EEG was 3.28 + 127 years), and d from group D (n =19, mean age of

pre-treatment EEG was 4.17 £ 141 years). Among the total 88 participants, only 79 EEG data at baseline and 12 months post-treatment were able to be
appropriately processed. Six participants lacked follow-up study, and 3 files were invalid on the analyzing program. *P < 005 by Mann-Whitney U test
comparing the difference between pre- and post-treatment DAR. DAR, delta/alpha ratio; EEG, electroencephalogram; UCB, umbilical cord blood

therapy potentiated with EPO in children with CP [27].
The therapeutic effect of allogeneic UCB combined with
EPO on motor function was reproduced. Our two pub-
lished trials of UCB plus EPO and UCB alone were in-
complete to assess the efficacy of allogeneic UCB and/or
EPO under the same controlled conditions. This is the
first study to analyze the contributions of combined or
individual UCB and EPO in children with CP among
four groups.

We observed no harmful effects related to UCB, EPO,
or their combination which were decided according to
the statistical analysis, the period of the occurrence,
likely risk of each serious event depending on the treat-
ment the patients received. Immunosuppressant admin-
istration for 16 days did not increase the occurrence of
AEs in groups A and B. In the previous trial, pneumonia
and irritability occurred more in the UCB- and the EPO-
administered groups, possibly because of the long 1-
month duration of immunosuppression treatment [27].
In this study, pneumonia listed in non-serious adverse
events seemed to be more noticeable in group C (4
cases) than the other groups (P =0.058). However, they
were decided to be unlikely related to the intervention,
according to clinical context. Furthermore, among the
four, two patients were reported to have pneumonia at
the baseline screening period and not after the interven-
tion. All participants could be followed for 3-5 years,
and there were no reports of serious AEs suspected to

be related to the treatment. As hypothesized, the levels
of hemoglobin, hematocrit, and red blood cell counts
were increased by EPO administration, which returned
to baseline within 1year; no thromboembolic events
were observed.

In the analyses of efficacy, group A showed better
outcomes in the GMPM and GMPM change ratio
than group D (A6.85 vs. A2.34, and 0.33 vs. 0.04, re-
spectively), at 12months post-treatment (Fig. 2A;
Additional files 10, 11). Additionally, the GMFM
change ratio showed a similar trend without statistical
significance. The GMFM and the GMPM are specific
tools for evaluating gross motor ability in children
with CP. Typically, the scores of GMFM and GMPM
are highly correlated [34]. The GMEFM represents
motor function related to ambulatory ability, whereas
GMPM assesses the quality of movement which is
specifically applied to CP [31, 50]. Thus, UCB and
EPO combination therapy improved gross motor abil-
ity without reaching alteration of ambulatory function.
As shown in Fig. 2A, UCB mono- (group B) or EPO
mono- (group C) therapy groups also showed the
trend of better motor recovery than control group.
However, only merging treatment of UCB and EPO
(group A) demonstrated noteworthy improvement
after 1year. Considering the difficulties in gaining
function and frequent occurrence of motor deterior-
ation in CP, this finding may be clinically applicable
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[3]. Therefore, in future trials, repeated treatments
with UCB and EPO combination may lead to greater
functional improvements. For BSID-II, there were no
differences between groups whereas it showed signifi-
cant difference in our previous trial [27]. The reason
could be thought as follows: First, the means of cell
dose were lower (in this study, A group 4.8 x 10’, B
group 5.0x107) than that of our previous study
(8.33 x 107). Second, BSID-II may not have been able
to reflect the changes because of its modest stability
as a development assessment tool [51]. BSID-II has
concerns on having limited floors and ceilings with
selecting item sets. Third, there could be differences
in clinical characteristics including typology and se-
verity between the trials. Another prior clinical study
also did not show significant findings in BSID-II [28].
However, evaluation tools seem to show different sen-
sitivities according to slightly different typology and
severity of study populations each time, and the tools
which showed significance at 0-1month seem to
show consistent significance at longer terms [27, 28].

The differences in the number of introduced UCB cells
in the clinical studies seemed to bring different results.
In our previous trial, which used higher dose of the cells,
GMPM score showed significant improvement by UCB
and EPO therapy from 3 months [27], while it showed
significance only at 12 months in this trial with small
number of cells. Amount of cell dose is thought to be an
important factor in administrating UCB as it was ap-
peared in the previous clinical researches [17, 27, 28]
and also an animal study showed a dose-response rela-
tionship [52]. Shorter duration of immunosuppression
(16 days) in this trial than in the previous one (28 days)
could be another factor. However, SAE and AE that
might relate to use of cyclosporin was not reported this
time. To enhance efficacy, administration of higher cell
dosage and also repeated cell delivery could be suggested
referring the other clinical trials [53, 54].

According to subgroup analyses, this therapy may
be more effective in the severely motor impaired and
term birth subgroup with a high risk of postnatal as-
phyxia. A higher cell dose and higher histocompatibil-
ity were reportedly found to be related to efficacy
[27, 28]. First, TNC affected the treatment outcomes
by increasing the GMPM score variance ratio in the
higher TNC subgroup in group A, leading to better
outcomes compared to those in groups C and D. Sec-
ond, in terms of histocompatibility, fully matched and
HLA 1-mismatched units administered to the subjects
yielded better motor outcomes than those in the HLA
2-mismatched group. Thus, autologous UCB, although
not available in most cases, may have superior clinical
results in CP [17, 55].
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Along with positive results upon functional measure-
ments, brain imaging and EEG yielded certain significant
findings. Analyses of DTI revealed the largest increase in
the FA value in the right ATR in group A among pa-
tients of older ages (>3 years), demonstrating improve-
ment in the integrity of the white matter tract including
myelination [56]. Changes in ATR indicate that facili-
tated reorganization occurred at the ascending somato-
sensory tracts [57]. The average age of group A was 3
years; at this age, the FA value does not typically in-
crease, as the DTI values start plateauing at age 24
months [58, 59]. According to '*F-fluorodeoxyglucose-
PET analysis, specific changes were not observed. In our
previous studies with 2-week interval follow-up, inflam-
mation was ameliorated in the posterior white matter
[27, 28]. The large difference in the evaluation interval,
which was 1 year in this study, appeared to give different
results.

Brain wave analysis revealed a decreasing trend in
DAR in groups A-C in the posterior cerebral cortices,
whereas group D did not show this trend. While the
delta band decrease starts from 6 months to 15 months
[60] concurrent with the decreasing delta/theta band
power ratio [61], alpha bands consistently increase with
age showing over 80% dominant frequency within the
alpha range by 3years [62]. Therefore, the decreased
DAR can be interpreted as the emergence of a more ma-
ture type of cortical sleep rhythms in the EEG.

Our previous study revealed increased PTX3 and
IL-8 plasma levels within 2 weeks, which were corre-
lated with functional outcomes in children with CP
treated with UCB [28]. The current study also dem-
onstrated the same results as plasma PTX3 and IL-8
levels were elevated in the more-improved subgroup
only in group B. Thus, PTX3 and IL-8 appear to be
related to the efficacy of UCB monotherapy. IL-8-
mediated angiogenic pathway was known to be stimu-
lated by UCB mononuclear cells [63]. Furthermore,
IL-1B gene expression was elevated at 3 days and 10
days post-treatment in patients showing a definite im-
provement in the ambulatory level in groups A and
B. IL-1p was known to be pro-inflammatory, but its
neuroprotective characteristics in the injured brain
was reported [64]. The core mechanism of the syner-
gistic effect of UCB and EPO remains to be solved
and the common pathway of UCB and EPO has not
been investigated. IL-1p was increased in the subjects
who are presumed to be responders in both groups A
and B. And this new finding suggests potential role of
IL-1B in neuroprotective mechanism of UCB and/or
EPO treatment. Further studies will be required to
determine other mechanisms other than those by
PTX3 and IL-8.
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This trial had some limitations. First, the ratio of out-
come variance from baseline was adopted because sub-
jects in group C tended to have better motor function.
Although differences in baseline were not statistically
significant, only a little difference may have affected their
outcomes since it is more difficult to gain motor im-
provement from their palsied status in case of more se-
verely impaired subjects [3, 4]. Therefore, we adopted
changed ratios in the scores to minimize influence in
their outcome by the baseline function. The efficacy
showing time points in GMPM were 1 month and 12
months post-treatment, which differed from those in
our previous studies, 3 and 6 months [27, 28]. This may
be related to the lower cell number and shorter duration
of immunosuppression in this study. Additionally, the
ceiling effect may have also led to the negative results in
Bayley scales. Lastly, the results subgroup analysis about
cell dose and HLA disparity should be interpreted with
deliberation due to small patient numbers.

Conclusion

In conclusion, these results suggest that allogeneic UCB
infusion therapy with EPO is safe and UCB plus EPO
can be synergistically effective than single treatment of
each for children with CP. More compatible and greater
numbers of cells may lead to better outcomes. Further
studies are necessary to reveal the core pathway related
to neuronal recovery and means for potentiating this
efficacy.
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According to the protocol, laboratory results were monitored at
screening (V1), baseline (V2), 10 days (V5), T-month (V7) and 1-year (V10)
after EPO administration. Groups A and C administered with EPO showed
higher levels of hemoglobin, hematocrit and red blood cell at 10 days
and 1 month compared to groups B and D not treated with EPO (all P
values < 0.001 by Kruskal-Wallis test). Bars represent SE. Abbreviations:
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of 12 months.

Additional file 10. Comparison of score changes in primary outcome
measures.

Page 10 of 12

Additional file 11. Comparison of score changes in ratio to baseline in
primary outcome measures.

Additional file 12. Composition of allogeneic UCB units for groups A
and B.

Additional file 13. Survey of parent perception of the intervention.
Legends: Satisfaction towards the intervention was surveyed among the
caregivers after the patients completed the trial before notified of the group
assignment, and caregivers of 63 patients completed the survey (response
rate of 71.6%). All items were positive numbers. In comparison among four
groups, the items of language and mental function were significantly
different (P=0.05, 0.015 respectively). In satisfaction of caregivers in aspect
of language function (A), the caregivers of group A agreed more strongly
that the language abilities of their children had improved compared to
group D (P=0.05). For the satisfaction of caregivers in aspect of mental
function (B), the caregivers of group B agreed more strongly that the
cognitive ability improved compared to group D (P=0.015).

Additional file 14.Subgroup comparisons of GMPM change ratios
among 4 groups. Legends: Panel A shows subgroup analyses using
GMPM change ratios according to (a) severe (GMFCS levels IV and V) vs.
(b) mild (GMFCS levels | to lll) impairment while Panel B shows GMPM
change ratios according to (a) preterm (GA < 37 weeks) vs. (b) term (GA
2 37 weeks) birth. Among severely impaired subjects (n =55, A: 14, B: 15,
C: 10, D: 16), group A showed a larger improvement in the GMPM
change ratio at 1 month and 12 months post-treatment than group D
(P=0.028 and P=0.008, respectively) (Panel A-(a)). In term birth subgroup
(n=23,A:6,B:4,C 4 D:9), groups A and B showed significant improve-
ment in the GMPM change ratio at 1, 6 month and 12 months post-
treatment compared to groups C and D (P=0.003, P=0.029 and P=
0.011, respectively) (Panel B-(b)). Abbreviations: CP, cerebral palsy; EPO,
erythropoietin; GA, gestational age; GMFCS, gross motor function classifi-
cation system; UCB, umbilical cord blood.

Additional file 15. Changes in FA value in children aged over 3 years/
Legends: In the subgroup analysis classified by median ages of four
groups - younger aged subgroups (aged below 3 years; n =49, median
age 2.28y; A: 12, B: 14, C: 10, D: 13) vs. older subgroup (aged over 3 years;
n =39, median age 4.12y; A: 10, B: 10, C: 10, D: 9). Primary outcome
measures did not show any significant differences between four groups.
FA change ratio in right anterior thalamic radiation (ATR) between
baseline and 12 months after intervention are depicted in this figure.
Group A showed significant difference of FA change ratio in ATRR
compared with group D. *P < 0.05 by post-hoc analysis after Kruskal-
Wallis test comparing the difference among 4 groups. Abbreviations: ATR:
anterior thalamic radiation; FA, fraction anisotropy.

Additional file 16. Metabolic changes after UCB injection Legends: In
comparison between pre- and post-intervention of PET/CT in each group,
glucose metabolism of (A) bilateral cerebellar hemisphere increased in
group B, (B) while the metabolic activity increased in midbrain and thal-
amus in group D. There were no meaningful changes in groups A and C.
Data of 71 subjects were included in PET/CT analysis because, 7 did not
undergo PET/CT on 12 months post-intervention, and 10 PET/CT imaging
data were not appropriately processed due to anatomical distortion on
SPM 12. Abbreviations: PET/CT, positron emission tomography/computed
tomography; UCB, umbilical cord blood.

Additional file 17. Gene expression of IL-13 among responders vs. non-
responders in groups A and B. Legends: Group A (UCB + EPO) and group
B (UCB + P-EPO) were re-grouped into 2 groups as responder subgroup
and non-responder subgroup, where responder (n = 13) subgroup refers
to those who showed improvements in GMFCS levels and non-responders
(n = 20) refers to those who did not show improvements in GMFCS levels
at 12 months post-intervention. Gene expression assay with RT-PCR
showed bigger increment in IL1- mRNA level in their relative values to
the baseline level (D-4) at 3 d (D+3; P=0.032) and 10 d (D+10; P=0.013)
post-intervention when comparing responder subgroup (dark-pink) with
non-responder subgroup (light pink). *P < 0.05 by Mann-Whitney U test.
Abbreviations: GMFCS, Gross Motor Functional Classification System; IL,
interleukin; RT-PCR, reverse transcription polymerase chain reaction.

Additional file 18.The cytokine analysis between responders and non-
responders in group B.
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